Pharmacogenomics of Type 2 Diabetes Mellitus
JBCAHS Vol 1 Issue 1 2017 Coverpage
Surendiran A
Department of Pharmacology, JIPMER, Pondicherry - 605006
Saranya V
Department of Pharmacology, Medical University of Americas, Nevis, West indies
Anusha N
Department of Pharmacology, JIPMER, Pondicherry - 605006

How to Cite

A S, V S, N A. Pharmacogenomics of Type 2 Diabetes Mellitus. jbcahs [Internet]. 16Oct.2017 [cited 16Dec.2018];1(1):8 -19. Available from:


Diabetes mellitus is a complex metabolic disorder with multiple factors associated with its causation, outcome and response to treatment. Several researchers are working on identifying the genetic and non-genetic factors that are implicated in disease causation as well as response to therapy. It has been found that, some of the genetic factors such as ABCC8 and KCNJ11 polymorphisms are associated with disease causation as well as outcome of therapy with specific drugs. Presence of multiple associative factors have led to the realization of a much complex network of pathways that are involved in diabetes mellitus. In this review we discuss the genetic factors involved in type 2 diabetes mellitus and in its response to treatment with different classes of drugs. The genetic factors include single nucleotide polymorphisms in genes coding for drug metabolizing enzymes (e.g., CYP2C9), drug transporters (e.g., OCT1, OCT 2, MATE1, MATE2), receptors and channels such as ABCC8, KCNJ11. The net effect of all genetic variations in each individual patient determines the outcome of therapy. To translate pharmacogenetics in to clinical practice, it is needed to have evidence on the net effect of genetic polymorphisms.



1. Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E,
et al. Report of the committee on the classifcation and diagnostic
criteria of diabetes mellitus. J Diabetes Investig. 2010;1:212–28.
2. International Diabetes Federation. IDF Diabetes Atlas 7 Edition.
[Internet] Available from: (accessed
on 04-10-2017)
3. Approaches to glycemic treatment. Diabetes Care. 2015;38:
4. Sathananthan A, Vella A. Personalized pharmacotherapy for Type
2 diabetes mellitus. Per Med. 2009;6:417–22.
5. Uusitupa MI, Stancakova A, Peltonen M, Eriksson JG, Lindstrom
J, Aunola S, et al. Impact of positive family history and genetic
risk variants on the incidence of diabetes: the Finnish Diabetes
Prevention Study. Diabetes Care. 2011;34:418–23.
6. Saaristo T, Moilanen L, Korpi-Hyovalti E, Vanhala M, Saltevo J,
Niskanen L, et al. Lifestyle intervention for prevention of type 2
diabetes in primary health care: one-year follow-up of the Finnish
Surendiran, et al,: Pharmacogenomics of Type 2 Diabetes Mellitus16 Journal of Basic, Clinical & Applied Health Sciences - Volume 1 | Issue 1 | October 2017
National Diabetes Prevention Program (FIN-D2D). Diabetes Care.
7. Penn L, White M, Lindstrom J, den Boer AT, Blaak E, Eriksson JG,
et al. Importance of weight loss maintenance and risk prediction
in the prevention of type 2 diabetes: analysis of European Diabetes
Prevention Study RCT. PLoS One. 2013;8:e57143.
8. Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V,
Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS):
Lifestyle intervention and 3-year results on diet and physical
activity. Diabetes Care. 2003;26:3230–6.
9. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E,
Nauck M, et al. Management of hyperglycaemia in type 2 diabetes:
a patient-centered approach. Position statement of the American
Diabetes Association (ADA) and the European Association for
the Study of Diabetes (EASD). Diabetologia. 2012;55:1577–96.
10. Aquilante CL. Sulfonylurea pharmacogenomics in Type 2 diabetes:
the influence of drug target and diabetes risk polymorphisms.
Expert Rev Cardiovasc Ther. 2010;8:359–72.
11. Flanagan SE, Clauin S, Bellanne-Chantelot C, de LP, Harries LW,
Gloyn AL, et al. Update of mutations in the genes encoding the
pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11)
and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and
hyperinsulinism. Hum Mutat. 2009;30:170–80.
12. Kirchheiner J, Brockmoller J, Meineke I, Bauer S, Rohde W,
Meisel C, et al. Impact of CYP2C9 amino acid polymorphisms
on glyburide kinetics and on the insulin and glucose response in
healthy volunteers. Clin Pharmacol Ther. 2002;71:286–96.
13. Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel
C, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on
tolbutamide kinetics and the insulin and glucose response in
healthy volunteers. Pharmacogenetics. 2002;12:101–9.
14. Becker ML, Visser LE, Trienekens PH, Hofman A, van Schaik RH,
Stricker BH. Cytochrome P450 2C9 *2 and *3 polymorphisms and
the dose and effect of sulfonylurea in type II diabetes mellitus. Clin
Pharmacol Ther. 2008;83:288–92.
15. Zhou K, Donnelly L, Burch L, Tavendale R, Doney AS, Leese
G, et al. Loss-of-function CYP2C9 variants improve therapeutic
response to sulfonylureas in type 2 diabetes: a Go-DARTS study.
Clin Pharmacol Ther. 2010;87:52–6.
16. Holstein A, Plaschke A, Ptak M, Egberts EH, El-Din J, Brockmoller
J, et al. Association between CYP2C9 slow metabolizer genotypes
and severe hypoglycaemia on medication with sulphonylurea
hypoglycaemic agents. Br J Clin Pharmacol. 2005;60:103–6.
17. Hansen T, Echwald SM, Hansen L, Moller AM, Almind K, Clausen
JO, et al. Decreased tolbutamide-stimulated insulin secretion
in healthy subjects with sequence variants in the high-afnity
sulfonylurea receptor gene. Diabetes. 1998;47:598–605.
18. Zhang H, Liu X, Kuang H, Yi R, Xing H. Association of sulfonylurea
receptor 1 genotype with therapeutic response to gliclazide in type
2 diabetes. Diabetes Res Clin Pract. 2007;77:58–61.
19. Feng Y, Mao G, Ren X, Xing H, Tang G, Li Q, et al. Ser1369Ala
variant in sulfonylurea receptor gene ABCC8 is associated with
antidiabetic efcacy of gliclazide in Chinese type 2 diabetic patients.
Diabetes Care. 2008;31:1939–44.
20. Distefano JK, Watanabe RM. Pharmacogenetics of anti-diabetes
drugs. Pharmaceuticals (Basel). 2010;3:2610–46.
21. Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes
RW, et al. Candidate gene association study in type 2 diabetes
indicates a role for genes involved in beta-cell function as well as
insulin action. PLoS Biol. 2003;1:E20.
22. Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T, Holmkvist
J, et al. Haplotype structure and genotype-phenotype correlations
of the sulfonylurea receptor and the islet ATP-sensitive potassium
channel gene region. Diabetes. 2004;53:1360–8.
23. Inoue H, Ferrer J, Warren-Perry M, Zhang Y, Millns H, Turner RC,
et al. Sequence variants in the pancreatic islet beta-cell inwardly
rectifying K+ channel Kir6.2 (Bir) gene: identifcation and lack of
role in Caucasian patients with NIDDM. Diabetes. 1997;46:502–7.
24. Gloyn AL, Hashim Y, Ashcroft SJ, Ashfeld R, Wiltshire S, Turner
RC. Association studies of variants in promoter and coding regions
of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with
Type 2 diabetes mellitus (UKPDS 53). Diabet Med. 2001;18:206–
25. Sesti G, Laratta E, Cardellini M, Andreozzi F, Del GS, Irace C, et
al. The E23K variant of KCNJ11 encoding the pancreatic betacell adenosine 5’-triphosphate-sensitive potassium channel subunit
Kir6.2 is associated with an increased risk of secondary failure to
sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol
Metab. 2006;91:2334–9.
26. Hamming KS, Soliman D, Matemisz LC, Niazi O, Lang Y, Gloyn
AL, et al. Coexpression of the type 2 diabetes susceptibility gene
variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and
sulfonylurea sensitivities of the ATP-sensitive K(+) channel.
Diabetes. 2009 ;58:2419–24.
27. Holstein A, Hahn M, Stumvoll M, Kovacs P. The E23K variant of
KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia
in patients with type 2 diabetes. Horm Metab Res. 2009;41:387–
28. Jin T. The WNT signalling pathway and diabetes mellitus.
Diabetologia. 2008;51:1771–80.
29. Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y, Liu H, et al. Association
between TCF7L2 gene polymorphisms and susceptibility to type 2
diabetes mellitus: a large Human Genome Epidemiology (HuGE)
review and meta-analysis. BMC Med Genet. 2009;10:15.
30. Pearson ER. Translating TCF7L2: from gene to function.
Diabetologia. 2009;52:1227–30.
31. Lyssenko V, Lupi R, Marchetti P, Del GS, Orho-Melander M,
Almgren P, et al. Mechanisms by which common variants in
the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest.
32. Hattersley AT, Pearson ER. Pharmacogenetics and beyond: the
interaction of therapeutic response, beta-cell physiology, and
genetics in diabetes. Endocrinology. 2006;147:2657–63.
33. Pearson ER, Donnelly LA, Kimber C, Whitley A, Doney AS,
McCarthy MI, et al. Variation in TCF7L2 influences therapeutic
response to sulfonylureas: a GoDARTs study. Diabetes.
34. Brunetti A, Chiefari E, Foti D. Recent advances in the molecular
genetics of type 2 diabetes mellitus. World J Diabetes. 2014;5:128–
35. Sesti G, Marini MA, Cardellini M, Sciacqua A, Frontoni S,
Andreozzi F, et al. The Arg972 variant in insulin receptor
substrate-1 is associated with an increased risk of secondary failure
to sulfonylurea in patients with type 2 diabetes. Diabetes Care.
36. Vergotine Z, Kengne AP, Erasmus RT, Matsha TE. No evidence
for association of insulin receptor substrate-1 Gly972Arg variant
with type 2 diabetes mellitus in a mixed-ancestry population of
South Africa. S Afr Med J. 2014;104:420–3.
37. Vergotine Z, Yako YY, Kengne AP, Erasmus RT, Matsha TE.
Proliferator-activated receptor gamma Pro12Ala interacts with
the insulin receptor substrate 1 Gly972Arg and increase the risk
of insulin resistance and diabetes in the mixed ancestry population
from South Africa. BMC Genet. 2014;15:10
38. Fallucca F, Dalfra MG, Sciullo E, Masin M, Buongiorno AM,
Napoli A, et al. Polymorphisms of insulin receptor substrate 1
and beta3-adrenergic receptor genes in gestational diabetes and
normal pregnancy. Metabolism. 2006;55:1451–6.
39. Kommoju UJ, Maruda J, Kadarkarai SS, Irgam K, Kotla JP,
Reddy BM. Association of IRS1, CAPN10, and PPARG gene
polymorphisms with type 2 diabetes mellitus in the high-risk
population of Hyderabad, India. J Diabetes. 2014;6:564–73.
40. Tok EC, Ertunc D, Bilgin O, Erdal EM, Kaplanoglu M, Dilek S.
Association of insulin receptor substrate-1 G972R variant with
baseline characteristics of the patients with gestational diabetes
mellitus. Am J Obstet Gynecol. 2006;194:868–72.
Surendiran, et al,: Pharmacogenomics of Type 2 Diabetes MellitusJournal of Basic, Clinical & Applied Health Sciences - Volume 1 | Issue 1 | October 2017 17
41. Pappa KI, Gazouli M, Economou K, Daskalakis G, Anastasiou
E, Anagnou NP, et al. Gestational diabetes mellitus shares
polymorphisms of genes associated with insulin resistance and
type 2 diabetes in the Greek population. Gynecol Endocrinol.
42. Alharbi KK, Khan IA, Abotalib Z, Al-Hakeem MM. Insulin
receptor substrate-1 (IRS-1) Gly927Arg: correlation with
gestational diabetes mellitus in Saudi women. Biomed Res Int.
43. Zhang C, Bao W, Rong Y, Yang H, Bowers K, Yeung E, et al.
Genetic variants and the risk of gestational diabetes mellitus: a
systematic review. Hum Reprod Update. 2013;19:376–90.
44. Chu AY, Coresh J, Arking DE, Pankow JS, Tomaselli GF, Chakravarti
A, et al. NOS1AP variant associated with incidence of type 2
diabetes in calcium channel blocker users in the Atherosclerosis
Risk in Communities (ARIC) study. Diabetologia. 2010;53:510–6.
45. Elbein SC, Hoffman MD, Teng K, Leppert MF, Hasstedt SJ. A
genome-wide search for type 2 diabetes susceptibility genes in
Utah Caucasians. Diabetes. 1999;48:1175–82.
46. Hanson RL, Ehm MG, Pettitt DJ, Prochazka M, Thompson DB,
Timberlake D, et al. An autosomal genomic scan for loci linked
to type II diabetes mellitus and body-mass index in Pima Indians.
AmJHumGenet. 1998;63:1130–8.
47. Langefeld CD, Wagenknecht LE, Rotter JI, Williams AH, Hokanson
JE, Saad MF, et al. Linkage of the metabolic syndrome to 1q23-q31
in Hispanic families: the Insulin Resistance Atherosclerosis Study
Family Study. Diabetes. 2004;53:1170–4.
48. Ng MC, So WY, Lam VK, Cockram CS, Bell GI, Cox NJ, et al.
Genome-wide scan for metabolic syndrome and related quantitative
traits in Hong Kong Chinese and confrmation of a susceptibility
locus on chromosome 1q21-q25. Diabetes. 2004;53:2676–83.
49. Becker ML, Aarnoudse AJ, Newton-Cheh C, Hofman A, Witteman
JC, Uitterlinden AG, et al. Common variation in the NOS1AP
gene is associated with reduced glucose-lowering effect and with
increased mortality in users of sulfonylurea. Pharmacogenet
Genomics. 2008;18:591–7.
50. Becker ML, Visser LE, Newton-Cheh C, Witteman JC, Hofman A,
Uitterlinden AG, et al. Genetic variation in the NOS1AP gene is
associated with the incidence of diabetes mellitus in users of calcium
channel blockers. Diabetologia. 2008;51:2138–40.
51. Effect of intensive blood-glucose control with metformin on
complications in overweight patients with type 2 diabetes (UKPDS
34). UK Prospective Diabetes Study (UKPDS) Group. Lancet.
52. Zolk O. Disposition of metformin: variability due to polymorphisms
of organic cation transporters. Ann Med. 2012;44:119–29.
53. Reitman ML, Schadt EE. Pharmacogenetics of metformin response:
a step in the path toward personalized medicine. J Clin Invest.
54. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR,
Jones NP, et al. Glycemic durability of rosiglitazone, metformin,
or glyburide monotherapy. N Engl J Med. 2006 7;355:
55. Hermann LS, Schersten B, Melander A. Antihyperglycaemic efcacy,
response prediction and dose-response relations of treatment with
metformin and sulphonylurea, alone and in primary combination.
Diabet Med. 1994;11:953–60.
56. Higgins JW, Bedwell DW, Zamek-Gliszczynski MJ. Ablation of
both organic cation transporter (OCT)1 and OCT2 alters metformin
pharmacokinetics but has no effect on tissue drug exposure and
pharmacodynamics. Drug Metab Dispos. 2012;40:1170–7.
57. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE.
Metformin pathways: pharmacokinetics and pharmacodynamics.
Pharmacogenet Genomics. 2012;22:820–7.
58. Powers AC, D’Alessio D. Endocrine pancreas and pharmacotherapy
of diabetes mellitus and hypoglycemia. In: Brunton LL, editor.
Goodman and Gilman’s the pharmacological basis of therapeutics.
12th ed. New York: McGraw Hill; 2011. p.1237-74.
59. Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP, et al.
Effect of genetic variation in the organic cation transporter 1,
OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther.
60. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA,
et al. Effect of genetic variation in the organic cation transporter 1
(OCT1) on metformin action. J Clin Invest. 2007;117:1422–31.
61. Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt
D, et al. The effects of genetic polymorphisms in the organic cation
transporters OCT1, OCT2, and OCT3 on the renal clearance of
metformin. Clin Pharmacol Ther. 2009;86:299–306.
62. Wang ZJ, Yin OQ, Tomlinson B, Chow MS. OCT2 polymorphisms
and in-vivo renal functional consequence: studies with metformin
and cimetidine. Pharmacogenet Genomics. 2008;18:637–45.
63. Choi MK, Song IS. Organic cation transporters and their
pharmacokinetic and pharmacodynamic consequences. Drug Metab
Pharmacokinet. 2008;23:243–53.
64. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I,
Karbach U, Quester S, et al. Cloning and characterization of two
human polyspecifc organic cation transporters. DNA Cell Biol.
65. Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V,
Mornhinweg E, et al. Identifcation of genetic variations of the
human organic cation transporter hOCT1 and their functional
consequences. Pharmacogenetics. 2002;12:591–5.
66. Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke
D, et al. Evolutionary conservation predicts function of variants of
the human organic cation transporter, OCT1. Proc Natl Acad Sci
USA. 2003;100:5902–7.
67. Kang HJ, Song IS, Shin HJ, Kim WY, Lee CH, Shim JC, et al.
Identifcation and functional characterization of genetic variants of
human organic cation transporters in a Korean population. Drug
Metab Dispos. 2007;35:667–75.
68. Sakata T, Anzai N, Shin HJ, Noshiro R, Hirata T, Yokoyama H,
et al. Novel single nucleotide polymorphisms of organic cation
transporter 1 (SLC22A1) affecting transport functions. Biochem
Biophys Res Commun. 2004;313:789–93.
69. Takeuchi A, Motohashi H, Okuda M, Inui K. Decreased function
of genetic variants, Pro283Leu and Arg287Gly, in human
organic cation transporter hOCT1. Drug Metab Pharmacokinet.
70. Itoda M, Saito Y, Maekawa K, Hichiya H, Komamura K, Kamakura
S, et al. Seven novel single nucleotide polymorphisms in the human
SLC22A1 gene encoding organic cation transporter 1 (OCT1). Drug
Metab Pharmacokinet. 2004;19:308–12.
71. Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo
K, et al. Human organic cation transporter (OCT1 and OCT2)
gene polymorphisms and therapeutic effects of metformin. J Hum
Genet. 2007;52:117–22.
72. Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney AS, Leese
G, et al. Reduced-function SLC22A1 polymorphisms encoding
organic cation transporter 1 and glycemic response to metformin:
a GoDARTS study. Diabetes. 2009;58:1434–9.
73. Natali A, Ferrannini E. Effects of metformin and thiazolidinediones
on suppression of hepatic glucose production and stimulation of
glucose uptake in type 2 diabetes: a systematic review. Diabetologia.
74. Hother-Nielsen O, Schmitz O, Andersen PH, Beck-Nielsen H,
Pedersen O. Metformin improves peripheral but not hepatic insulin
action in obese patients with type II diabetes. Acta Endocrinol
Copenh. 1989;120:257–65.
75. Bailey CJ, Mynett KJ, Page T. Importance of the intestine as a
site of metformin-stimulated glucose utilization. Br J Pharmacol.
76. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden
AG, Stricker BH. Genetic variation in the organic cation transporter
1 is associated with metformin response in patients with diabetes
mellitus. Pharmacogenomics J. 2009;9:242–7.
Surendiran, et al,: Pharmacogenomics of Type 2 Diabetes Mellitus18 Journal of Basic, Clinical & Applied Health Sciences - Volume 1 | Issue 1 | October 2017
77. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden
AG, Stricker BH. Genetic variation in the multidrug and toxin
extrusion 1 transporter protein influences the glucose-lowering
effect of metformin in patients with diabetes: a preliminary study.
Diabetes. 2009;58:745–9.
78. Song IS, Shin HJ, Shin JG. Genetic variants of organic cation
transporter 2 (OCT2) signifcantly reduce metformin uptake in
oocytes. Xenobiotica. 2008;38:1252–62.
79. Chen Y, Li S, Brown C, Cheatham S, Castro RA, Leabman MK, et
al. Effect of genetic variation in the organic cation transporter 2
on the renal elimination of metformin. Pharmacogenet Genomics.
80. Jablonski KA, McAteer JB, de Bakker PI, Franks PW, Pollin TI,
Hanson RL, et al. Common variants in 40 genes assessed for diabetes
incidence and response to metformin and lifestyle intervention in
the diabetes prevention program. Diabetes. 2010;59:2672–81.
81. Christensen MM, Brasch-Andersen C, Green H, Nielsen F, Damkier
P, Beck-Nielsen H, et al. The pharmacogenetics of metformin and
its impact on plasma metformin steady-state levels and glycosylated
hemoglobin A1c. Pharmacogenet Genomics. 2011;21:837–50.
82. Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL,
Tavendale R, et al. Common variants near ATM are associated with
glycemic response to metformin in type 2 diabetes. Nat Genet.
83. Menendez JA, Cuf S, Oliveras-Ferraros C, Martin-Castillo B, Joven
J, Vellon L, et al. Metformin and the ATM DNA damage response
(DDR): accelerating the onset of stress-induced senescence to boost
protection against cancer. Aging AlbanyNY. 2011;3:1063–77.
84. Glazer NL. Variation in the ATM gene may alter glycemic response
to metformin. Circ Cardiovasc Genet. 2011;4:210–1.
85. Sun Y, Connors KE, Yang DQ. AICAR induces phosphorylation of
AMPK in an ATM-dependent, LKB1-independent manner. Mol
Cell Biochem. 2007;306:239–45.
86. Fu X, Wan S, Lyu YL, Liu LF, Qi H. Etoposide induces ATMdependent mitochondrial biogenesis through AMPK activation.
PLoS One. 2008;3:e2009.
87. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al.
Role of AMP-activated protein kinase in mechanism of metformin
action. J Clin Invest. 2001;108:1167–74.
88. Woods A, Leiper JM, Carling D. The role of ATM in response
to metformin treatment and activation of AMPK. Nat Genet.
89. Yee SW, Chen L, Giacomini KM. The role of ATM in response
to metformin treatment and activation of AMPK. Nat Genet.
90. Florez JC, Jablonski KA, Taylor A, Mather K, Horton E, White
NH, et al. The C allele of ATM rs11212617 does not associate with
metformin response in the Diabetes Prevention Program. Diabetes
Care. 2012;35:1864–7.
91. van LN, Nijpels G, Becker ML, Deshmukh H, Zhou K, Stricker
BH, et al. A gene variant near ATM is signifcantly associated with
metformin treatment response in type 2 diabetes: a replication
and meta-analysis of fve cohorts. Diabetologia. 2012;55:1971–7.
92. Tkac I. Replication of the association of gene variant near ATM
and response to metformin. Pharmacogenomics. 2012;13:1331–2.
93. Shokri F, Ghaedi H, Fard GS, Movafagh A, Abediankenari S,
Mahrooz A, et al. Impact of ATM and SLC22A1 Polymorphisms
on therapeutic response to metformin in iranian diabetic patients.
Int J Mol Cell Med. 2016;5:1-7.
94. Zou C, Hu H. Use of pioglitazone in the treatment of diabetes:
effect on cardiovascular risk. Vasc Health Risk Manag. 2013;9:429-
95. Defronzo RA, Mehta RJ, Schnure JJ. Pleiotropic effects of
thiazolidinediones: implications for the treatment of patients with
type 2 diabetes mellitus. Hosp Pract. 2013;41:132–47.
96. Rizos CV, Liberopoulos EN, Mikhailidis DP, Elisaf MS. Pleiotropic
effects of thiazolidinediones. Expert Opin Pharmacother.
97. Schernthaner G, Currie CJ, Schernthaner GH. Do we still need
pioglitazone for the treatment of type 2 diabetes? A risk-beneft
critique in 2013. Diabetes Care. 2013;36 Suppl 2:S155-61.
98. Chen X, Yang L, Zhai SD. Risk of cardiovascular disease and allcause mortality among diabetic patients prescribed rosiglitazone or
pioglitazone: a meta-analysis of retrospective cohort studies. Chin
Med J Engl. 2012;125:4301–6.
99. Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death
and major adverse cardiovascular events in patients with type 2
diabetes mellitus. JAMA. 2005 23;294:2581–6.
100. Baldwin SJ, Clarke SE, Chenery RJ. Characterization of the
cytochrome P450 enzymes involved in the in vitro metabolism of
rosiglitazone. Br J Clin Pharmacol. 1999;48:424–32.
101. Jaakkola T, Laitila J, Neuvonen PJ, Backman JT. Pioglitazone
is metabolised by CYP2C8 and CYP3A4 in vitro: potential for
interactions with CYP2C8 inhibitors. Basic Clin Pharmacol
Toxicol. 2006;99:44–51.
102. Aquilante CL, Bushman LR, Knutsen SD, Burt LE, Rome
LC, Kosmiski LA. Influence of SLCO1B1 and CYP2C8 gene
polymorphisms on rosiglitazone pharmacokinetics in healthy
volunteers. Hum Genomics. 2008;3:7–16.
103. Stage TB, Christensen MM, Feddersen S, Beck-Nielsen H, Brosen
K. The role of genetic variants in CYP2C8, LPIN1, PPARGC1A
and PPARgamma on the trough steady-state plasma concentrations
of rosiglitazone and on glycosylated haemoglobin A1c in type 2
diabetes. Pharmacogenet Genomics. 2013;23:219–27.
104. Yeo CW, Lee SJ, Lee SS, Bae SK, Kim EY, Shon JH, et al. Discovery
of a novel allelic variant of CYP2C8, CYP2C8*11, in Asian
populations and its clinical effect on the rosiglitazone disposition
in vivo. Drug Metab Dispos. 2011;39:711–6.
105. Tornio A, Niemi M, Neuvonen PJ, Backman JT. Trimethoprim and
the CYP2C8*3 allele have opposite effects on the pharmacokinetics
of pioglitazone. Drug Metab Dispos. 2008;36:73–80.
106. Pedersen RS, Damkier P, Brosen K. The effects of human CYP2C8
genotype and fluvoxamine on the pharmacokinetics of rosiglitazone
in healthy subjects. Br J Clin Pharmacol. 2006;62:682–9.
107. Hruska MW, Amico JA, Langaee TY, Ferrell RE, Fitzgerald
SM, Frye RF. The effect of trimethoprim on CYP2C8 mediated
rosiglitazone metabolism in human liver microsomes and healthy
subjects. Br J Clin Pharmacol. 2005;59:70–9.
108. Dumasia R, Eagle KA, Kline-Rogers E, May N, Cho L, Mukherjee
D. Role of PPAR- gamma agonist thiazolidinediones in treatment of
pre-diabetic and diabetic individuals: a cardiovascular perspective.
Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:377–86.
109. Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP,
et al. Molecular scanning of the human peroxisome proliferator
activated receptor gamma (hPPAR gamma) gene in diabetic
Caucasians: identifcation of a Pro12Ala PPAR gamma 2 missense
mutation. Biochem Biophys Res Commun. 1997;241:270–4.
110. Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins
JP. The association between the peroxisome proliferator-activated
receptor-gamma2 (PPARG2) Pro12Ala gene variant and type
2 diabetes mellitus: a HuGE review and meta-analysis. Am J
Epidemiol. 2010;171:645–55.
111. Hsieh MC, Lin KD, Tien KJ, Tu ST, Hsiao JY, Chang SJ, et al.
Common polymorphisms of the peroxisome proliferator-activated
receptor-gamma (Pro12Ala) and peroxisome proliferator-activated
receptor-gamma coactivator-1 (Gly482Ser) and the response to
pioglitazone in Chinese patients with type 2 diabetes mellitus.
Metabolism. 2010;59:1139–44.
112. Kang ES, Park SY, Kim HJ, Kim CS, Ahn CW, Cha BS, et al. Effects
of Pro12Ala polymorphism of peroxisome proliferator-activated
receptor gamma2 gene on rosiglitazone response in type 2 diabetes.
Clin Pharmacol Ther. 2005;78:202–8.
113. Namvaran F, Azarpira N, Rahimi-Moghaddam P, Dabbaghmanesh
MH. Polymorphism of peroxisome proliferator-activated receptor
gamma (PPARgamma) Pro12Ala in the Iranian population: relation
Surendiran, et al,: Pharmacogenomics of Type 2 Diabetes MellitusJournal of Basic, Clinical & Applied Health Sciences - Volume 1 | Issue 1 | October 2017 19
with insulin resistance and response to treatment with pioglitazone
in type 2 diabetes. Eur J Pharmacol. 2011;671:1–6.
114. Bluher M, Lubben G, Paschke R. Analysis of the relationship
between the Pro12Ala variant in the PPAR-gamma2 gene and the
response rate to therapy with pioglitazone in patients with type 2
diabetes. Diabetes Care. 2003;26:825–31.
115. Ghantous CM, Azrak Z, Hanache S, Abou-Kheir W, Zeidan A.
Differential role of leptin and adiponectin in cardiovascular system.
Int J Endocrinol. 2015;2015:534320.
116. Esfahani M, Movahedian A, Baranchi M, Goodarzi MT. Adiponectin:
an adipokine with protective features against metabolic syndrome.
Iran J Basic Med Sci. 2015;18:430–42.
117. Narayana SA, Valasala H, Kamma S. In silico evaluation of
nonsynonymous single nucleotide polymorphisms in the ADIPOQ
gene associated with diabetes, obesity, and inflammation. Avicenna
J Med Biotechnol. 2015;7:121–7.
118. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K.
Adiponectin and adiponectin receptors in insulin resistance, diabetes,
and the metabolic syndrome. J Clin Invest. 2006;116:1784–92.
119. Kang ES, Park SY, Kim HJ, Ahn CW, Nam M, Cha BS, et al. The
influence of adiponectin gene polymorphism on the rosiglitazone
response in patients with type 2 diabetes. Diabetes Care.
120. Sun H, Gong ZC, Yin JY, Liu HL, Liu YZ, Guo ZW, et al.
The association of adiponectin allele 45T/G and -11377C/G
polymorphisms with Type 2 diabetes and rosiglitazone response
in Chinese patients. Br J Clin Pharmacol. 2008;65:917–26.
121. Yang H, Ye E, Si G, Chen L, Cai L, Ye C, et al. Adiponectin
gene polymorphism rs2241766 T/G is associated with response to
pioglitazone treatment in type 2 diabetic patients from southern
China. PLoS One. 2014;9:e112480.
122. Li Z, Peng X, Wu Y, Xia Y, Liu X, Zhang Q. The influence of
adiponectin gene polymorphism on the pioglitazone response in the
Chinese with type 2 diabetes. Diabetes Obes Metab. 2008;10:794–
123. Namvaran F, Rahimi-Moghaddam P, Azarpira N, Dabbaghmanesh
MH. Polymorphism of adiponectin (45T/G) and adiponectin
receptor-2 (795G/A) in an Iranian population: relation with insulin
resistance and response to treatment with pioglitazone in patients
with type 2 diabetes mellitus. Mol Biol Rep. 2012;39:5511–8.
124. Liu HL, Lin YG, Wu J, Sun H, Gong ZC, Hu PC, et al. Impact of
genetic polymorphisms of leptin and TNF-alpha on rosiglitazone
response in Chinese patients with type 2 diabetes. Eur J Clin
Pharmacol. 2008;64:663–71.
125. Beinborn M, Worrall CI, McBride EW, Kopin AS. A human
glucagon-like peptide-1 receptor polymorphism results in reduced
agonist responsiveness. Regul Pept. 2005;130:1–6.
126. Liu Z, Habener JF. Glucagon-like peptide-1 activation of
TCF7L2-dependent Wnt signaling enhances pancreatic beta cell
proliferation. J Biol Chem. 2008;283:8723–35.
127. Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI,
Shuldiner AR, et al. TCF7L2 polymorphisms and progression
to diabetes in the Diabetes Prevention Program. N Engl J Med.


Download data is not yet available.